走進不科學百科

第二百九十七章 倫琴:你了不起,你清高啊!(7.4K)

實驗室內。

在發現了這道異常光線後。

法拉第、高斯、韋伯三人不敢怠慢,立刻便聚集到了桌子邊緣。

只見三個人的大腦門兒挨在一起,目光死死的盯著面前的真空管。

不知為何。

這個畫面讓徐雲想到了自己穿越之前,曾經看到過的一個表情包:

三頭金毛圍在一個墊子邊,目光看著墊子裡一隻和他們鼻子差不多大的小奶貓,旁邊寫著“這傢伙就是新來的?”這麼一行字.......

咳咳...這應該不算欺師滅祖吧。

過了一會兒。

韋伯捋了捋自己濃密的鬍鬚,轉頭望向小麥,眼中帶著一股疑惑:

“真是奇怪啊......”

“麥克斯韋同學,你是怎麼發現這道光的?”

此時的小麥依舊站在開關邊上,聞言指了指窗戶,答道:

“我剛才閃現...咳咳,我剛才站立的位置,正好對著那扇窗戶。”

“窗戶的位置在角落,門戶又被窗簾給遮住了光線,所以那一帶視野相對會比較暗一點。”

“結果在扭頭的時候,我忽然感覺有什麼東西好像在花瓶上閃了一下,但轉過頭的時候它又消失了,所以......”

法拉第抬起頭看了他一眼,接話道:

“所以你才認為這可能是幻覺,沒有直接告訴我們這個現象,而是選擇了自己上手驗證,是嗎?”

小麥輕輕點了點頭。

實話實說。

剛才那道閃光出現的時間很短,他還來不及細看就消失了,所以他確實以為是自己的幻覺來著。

況且此時的窗戶雖然已經拉起了窗簾,但外頭可是大白天,多多少少都有些陽光會透射進來。

保不齊照在花瓶上的就是外頭的光線呢?

因此出於這個心理。

小麥並沒有急著將這個情況告訴法拉第和高斯,而是自己重新擺放好花瓶,再次進行了一次實驗。

整件事的前因後果確實沒什麼特殊的,但問題是.......

這道光線到底是怎麼回事?

它到底是怎麼出現的?

它的物理性質又是什麼?

在如今已經發現了電磁波的情況下,法拉第等人已經有資格對於一些現象進行更深入的分析了。

隨後法拉第想了想,轉過身,對基爾霍夫道:

“古斯塔夫,你重新取一根蕭炎管出來。”

“記得把中間區域擷取成兩段,彼此中空十厘米,再做一次實驗。”

基爾霍夫微微一愣,對法拉第確認道:

“法拉第教授,您是說.....把一根蕭炎管擷取成兩段?口對口間隔十厘米?”

法拉第點點頭:

“沒錯。”

基爾霍夫見說臉上露出一絲遲疑,猶豫著道:

“法拉第教授,擷取真空管倒是沒問題,可這樣一來,我們費盡心力製備的真空度就會受到影響了......”

很早以前提及過。

蕭炎管...或者說魔改版的蓋斯勒管在構造上有些類似克魯克斯管。

為了便於實驗觀察,這種真空管是可以從中間擰成兩節然後增加長度的。

例如勒納德實驗用的真空管,曾經被補長到了1.3米長。

所以單獨將真空管擰成兩段的做法並不奇怪,為了再增加一部分管身來方便觀察嘛。

但像法拉第所言擰開後不增加管身、而是直接隔空十厘米相對的做法,無疑就有些令人費解了。

因為真空管的設計目的就是為了創造真空環境,一旦兩節管身裸露在空氣中,必然會導致真空度嚴重下降。

真空度一下降,陰極射線就不好出現了。

面對基爾霍夫的疑問,法拉第朝他擺了擺手,說道:

“古斯塔夫,你先這樣去做吧,我心中有數。”

眼見法拉第堅持這個做法,基爾霍夫心中雖然費解不已,但也只好乖乖照做:

“明白了,法拉第教授。”

法拉第這次交由劍橋大學制備的‘蕭炎管’足足有二十多根,因此基爾霍夫很快便準備好了法拉第所需要的全新裝置:

一根真空管被從中分成了兩截,彼此相距十厘米。

它們的外部依舊用導線連線著迴路,保證陰極和陽極能夠連通,不會出現短路。

同時法拉第在陽極那端的截口處放上了一個熱電偶,用以觀察資料。

一切準備就緒後。

法拉第再次開啟了電源。

過了幾秒鐘。

陰極處例行出現了一道藍白光,並且伴隨著兩三塊暗區。

不過隨著光路的行進。

當光線離開陰極截口,與空氣相接觸時......

藍白光只前進了三五厘米,便在空氣中徹底消散了。

與此同時。

法拉第看了眼熱電偶,上頭清晰的顯示著溫升數值:

0.00007。

這是一個相當小的數字。

根據溫升轉換的公式簡單計算,可以說幾乎沒多少陰極射線抵達陽極一端。

截口處尚且如此,就更別說陽極末端了。

見此情形。

法拉第關閉開關,與高斯和韋伯對視了一眼。

三人都從彼此的眼中,看出了一股凝重與興奮。

這次對照實驗無論是現象還是熱電偶的數字反饋,都清楚的說明了一件事:

陰極射線在空氣中的穿透力要比他們預想的更弱,能行進個幾厘米都算長了。

而那道照射在花瓶上的光線,卻足足穿透了兩米的空氣!

這代表著二者的能級、波長、頻率都是不同的!

想到這裡。

高斯忽然意識到了什麼,從身上取出了一個圓筒式放大鏡——也就是後世修表師傅常用的那種單眼放大鏡,快步走到了發射出神秘射線的真空管邊。

只見他俯下身,將戴著放大鏡的眼睛移動到了陽極附近。

過了幾秒鐘。

高斯的口中忽然發出了一聲輕咦,對一旁的法拉第和韋伯招了招手:

“邁克爾,愛德華,你們快來看!”

法拉第與韋伯接連快步走到他身邊,法拉第將手放到了高斯的肩膀上,問道:

“發生甚麼事了,弗里德里希?”

高斯將放大鏡取下,遞到二人面前,指著陽極一末端說道:

“你們自己看看吧,注意兩道光線的位置。”

法拉第和韋伯對視一眼,由法拉第先接過了高斯手中的放大鏡。

調教好係數後。

他也戴上放大鏡,彎下身觀察了起來。

很快。

法拉第濃密的劍眉微微一揚,似乎發現了什麼奇怪的地方,身子再次前傾了少許。

過了大概小半分鐘。

法拉第深吸一口氣,站起身,將放大鏡和位置都讓給了韋伯。

韋伯跟著復刻了一遍他的動作。

待韋伯也起身後。

高斯對著他和法拉第問道:

“怎麼樣,邁克爾,愛德華,你們看到了嗎?”

法拉第輕輕點了點頭,掃了眼一旁不明所以的黎曼和基爾霍夫,緩緩道:

“看到了,陰極射線在陽極的射入點與未知光線的射出點......並不在一條水平線上。”

“要知道,陽極可是金屬板。”

在光學領域中。

光線如果在介質中發生某些折射現象,那麼它的射入點和射出點確實可能不在一條水平線。

但這種情況可能發生在晶體上,可能發生在石頭內部,甚至可能發生在水裡或者空氣裡。

卻唯獨不可能發生在金屬板內——因為絕大部分正常厚度的金屬板,根本就無法允許光穿過。

也就是通俗表達的‘金屬不透明’。

造成這個現象的原因可以勉強用經典力學來解釋。

也就是金屬有高電導,反射率本來就高,透射光會被焦耳熱耗散。

當然了。

這個解釋比較淺顯,根本原因還是需要量子力學才能解釋,涉及到了金屬中的電子能級問題。

眾所周知。

各種顏色的光本質是各種波長的電磁波。

按照量子力學,物質中的電子可以處於各種或連續或分離的能量上,稱為能級。

如果低能級的電子遇到一個能量合適的光子,就會吸收這個光子的能量,跳到一個更高的能級上——能量合適的意思,就是光子的能量等於高低能級之差。

一個波段的光是否會被吸收,就取決於是否存在這樣的電子和兩個能級。

如果不被吸收,光就透過了物質。

這就是透明。

舉例而言。

如果一種物質的能級是小於等於0與大於等於5,所有的電子剛好填滿小於等於0的那些能級。

那麼光子的能量至少要達到5才能被吸收,小於5的那些光就透過了。

金屬不透明,是因為金屬中的電子能級在很大範圍內是連續的,任何能量的光子進來都能被吸收。

沒用的知識又增加了.JPG。

話題迴歸原處。

因此對於金屬陽極而言。

理論上根本不可能出現一束光從左側穿過,接著又從右側更下方區域出現的情況。

要麼完全被阻擋,要麼從某個縫隙透過——但如果是這種情況,那麼射入點和射出點必然處於相同的位置。

換而言之。

生成這束異常光線的源頭不是陰極也不是管內的空氣電離,而是.......

陽極本身!

想到這裡。

高斯的心臟重重的漏跳了一拍,轉頭看向法拉第,問道:

“邁克爾,陽極是哪種金屬?”

法拉第微微一愣,下意識便脫口而出:

“鎢板!”

旋即他驟然想到了什麼,猛的轉頭看向徐雲。

不過令他驚訝的是......

徐雲此時的表情,亦是夾雜著費解、震驚與疑惑。

以法拉第的閱歷判斷......

這還真不像是假的。

隨後他與高斯對視一眼,沉吟片刻,出聲對徐雲問道:

“羅峰同學,肥魚先生有說過為什麼會選擇鎢板做陽極嗎?”

徐雲這才回過神,再次一臉呆萌的搖了搖頭:

“我不到啊。”

法拉第認真的盯了他幾秒鐘,心中不由產生了些許疑惑。

難道說這事他真不知道?

畢竟鎢板這東西也算是常見電極,有些時候甚至要比鋅板還更容易獲得,實驗室內並不少見。

一塊直徑一厘米的鎢板,也不存在成本高低的說法。

加之“肥魚”的居住地是尼德蘭,那邊又盛產鎢板.....

如此一來,用巧合倒也能解釋過去......

想到這裡。

法拉第雖然心中還有猶疑,但依舊緩緩收回了目光。

看著重新將注意力放回真空管的法拉第,徐雲不由輕輕舒了口氣。

還好還好,這次總算是糊弄過去了。

雖然從理論角度上來說,銅板、鋅板都可以激發出這個特殊射線。

但這些材質的激發條件比較複雜,最少需要一個高壓發生器。

高壓發生器這玩意兒雖然不難找,但想要將它合適的加入陰極射線的研究過程卻不是一件易事。

一旦等到法拉第等人發現其實不需要高壓發生器就能生成陰極射線,那麼很容易便會將神秘射線的出現原因懷疑到自己身上。

這顯然不是一件好事。

實際上。

徐雲這次也確實沒有引導法拉第等人發現新射線的打算,他的預期目標其實到陰極射線就完事兒了。

結果沒想到他費盡心思的將歷史往前推了一小步,小麥這個二愣子...或者說氣運之子,傻乎乎的再將歷史往前踹了一腳......

雅文庫

沒錯。

氣運之子。

為啥要這麼說呢?

原因很簡單。

小麥發現的這種光不是其他東西,正是赫赫有名的.......

X射線!

歷史上X射線的發現者是威廉·康拉德·倫琴,他發現X射線的過程被記錄在了小學(還是中學忘了)課本上。

那是在1895年11月8日的傍晚,倫琴例行開始研究起了陰極射線。

當時為了防止外界光線對放電管的影響,也為了不使管內的可見光漏出管外,他把房間全部弄黑,還用黑色硬紙給放電管做了個封套。

為了檢查封套是否漏光,他給放電管接上電源,他看到封套沒有漏光而滿意。

可是當他切斷電源後,卻意外地發現一米以外的一個小工作臺上有閃光,閃光是從一塊熒光屏上發出的。

然而陰極射線只能在空氣中進行幾個厘米,這是別人和他自己的實驗早已證實的結論。

因此倫琴做出了一個判斷:

這不是陰極射線,而是一種新射線。

後來倫琴經過反覆實驗,最終確定了這是一種尚未為人所知的新射線,便給它取了個名字:

X射線。

再後來,一個經典出現了:

某天他夫人到實驗室來看他時,他請她把手放在用黑紙包嚴的照相底片上,然後用X射線對準照射了15分鐘。

顯影后。

底片上清晰地呈現出他夫人的手骨像,手指上的結婚戒指也很清楚。

許多人時隔多年,都對倫琴夫人的那張手骨照片印象深刻。

後來倫琴還憑此獲得了諾貝爾獎,成為了第一屆諾貝爾物理學獎的得主。

但一方面。

由於受眾年齡的問題,課本上對於倫琴發現X射線的過程並沒有太過深入的進行描述。

在原本歷史中,倫琴發現X光的過程其實遠遠沒有書上寫的那麼簡單。

讀過光學的同學應該都知道。

光,實際上就是能量的傳遞,其本質是一種處於特定頻段的光子流。

光源發出光,是因為光源中的電子獲得額外能量,在躍遷過程中以波的形式釋放能量。

太陽光、電光、火光都是如此。

因此呢。

本質上光又是一種電磁波,是依靠光子傳遞的能量資訊。

有能量,那麼自然就有頻率之說了。

人眼在長期進化中,只對波段約380~780nm的頻段感光,因此這個特定頻段的電磁波被稱為可見光。

也就是赤橙黃綠青藍紫等等。

而除了可見光之外,還有許多人眼看不見的光。

如無線電波、紅外線、紫外線、X射線、γ射線,就屬於看不見的光。

這些光都是電磁波譜中的某一個波段和頻率。

X射線是僅次於γ射線的電磁波,波長在10奈米~0.01奈米之間,頻率在3^16~3^20赫茲之間,能量為124eV~1.24MeV。

這是每一個光子的能量,x射線屬於高能射線,因此它的穿透力很強。

當X射線照射人體時。

一部分x射線被人體物質吸收,大部分則會從原子隙縫穿越透過。

頻率越高波長越短的X射線能量越大,穿透能力越強。

在穿透物體的過程中。

根據物體的密度和厚度,X射線的吸收度不一樣。

因此穿越的X射線就有強有弱,這樣就在感光膠片中顯示出被穿越物體的結構來——這就是後世X光的原理。

說到這裡,那麼問題就來了:

既然X射線是不可見光,那麼倫琴是怎麼注意到它的呢?

課本上只是寫了倫琴在真空管外的螢幕上發現了光點,但X射線不可見,理論上也注意不到它才對嘛。

當然了。

看到這裡,或許有人會問:

不對吧。

為什麼紫外線可不見,但紫外線燈卻能看到紫光呢?

原因很簡單:

因為紫外線燈的廠商在燈內加入了光引發劑或光敏劑,經過吸收紫外線光後產生活性自由基或離子基,從而引發聚合、交聯和接枝反應。

這個過程有個專屬名詞,叫做UV固化。

UV光輻射物理性質類似於可見光,所以你才能見到紫外線燈的‘光線’。

真正的紫外線,你是看不到的。

因此對於倫琴而言。

即使在密閉的屋內,頂多也就陽極處會因為電離效果而出現少許光線(也就是法拉第他們觀察到的射出點),而末尾處應該是看不到才是。

真正幫助倫琴發現X射線的,其實是一種叫做氰化鉑酸鋇的東西。

它在與X射線接觸後,便會發出一種可見的熒光。

氰化鉑酸鋇是一種19世紀常見的塗料,實驗室和文藝創作中都很常見。

當時倫琴見到投射有X射線光斑的東西,便是一枚塗有氰化鉑酸鋇的熒幕。

而如今這間實驗室內。

唯一塗有氰化鉑酸鋇的,便是.......

小麥所見到的那個花瓶外飾。

所以有些時候徐雲真的不得不懷疑,世上是不是真有氣運之子這種說法。

在他的計劃中。

之所以會在實驗過程使用鎢板做陽極,目的只為了將它固定成一種陰極射線研究的常用材料。

就像電解池常用銅棒一樣,讓後人養成一種習慣。

等使用的人一多,短則三五年,長則十一二年。

總會有人湊巧的見到X射線打在類氰化鉑酸鋇材料上的現象。

屆時呢,徐雲已經安然魂歸故里(?)。

時間上又與現如今有一定緩衝期,無疑稱得上是一個非常精妙的安排。

結果誰能想到。

小麥這貨不講武德,愣是找到了屋內唯一塗有氰化鉑酸鋇的花瓶,它還偏偏就在X射線的光路上.......

與此同時。

一千公里外的尼德蘭。

一座叫做阿佩爾多恩的小城裡。

某所幼兒園內。

一位正在準備午睡、面容看上去普普通通的小男孩,忽然伸出手,抓了抓空氣。

不遠處的保育員見到了這一幕,便走過來問道:

“發生了什麼事嗎?”

小男孩下意識的張了張嘴。

不知為何,他忽然感覺心中空落落的,彷彿......

有什麼東西失去了一般。

不過最後,他還是搖了搖頭:

“我沒事,桑奇老師。”

“那就先睡午覺吧,倫琴。”

...............

------題外話------

推一本書,《我在不列顛當錦衣衛》,劇情就是明朝殖民了全世界,東方蒸汽朋克,機械科技和超凡力量。有點克蘇魯和scp元素,感興趣的可以去看看哈,也是個老牌作者了

人氣小說推薦More+

最強夢境治療師
最強夢境治療師
傅沅從不做夢,她只會進入別人的夢裡。後來,她做了精神病院的心理科醫生。 她本以為日子就這樣平平淡淡,直到某天,她在夢裡殺死了怪物,救了一個小孩。 第二天,患者的家長找上門,握住她的手,感激道:“傅醫生,謝謝你治好了我的孩子!” *場景片段(濃縮版)* 度假。 沙灘上出現了一具破碎的屍體,法醫鑑定是自殺。 空曠的場地、來往的人流,都證明著不可能會有兇手。 可, 她昨晚並沒有見過那個男人。 她將頭埋進
不吃餅子
聽懂獸語,她讓全體炮灰改命殺瘋
聽懂獸語,她讓全體炮灰改命殺瘋
沈時薇覺醒了。腦海中湧現的文字告訴她,這是本末世小說,而她是裡面作天作地的炮灰女配,甚至都沒活到主角出場,就死於喪屍撕咬之下。 想要確保自己的炮灰命是否能更改,就從更炮灰的小炮灰的身上改命! 腦海中浮現出的文字寫著:[這個男生即將死於喪屍口中。][你的大哥,二哥將會死在喪屍潮中。 ][女生在亂世之下不求如何保命,還一心勾引男人期盼上位,最後卻被無視,導致被喪屍撕咬分食。 ]本想只改寫自己炮灰命運的
柒柒不缺糖
人類失蹤,幸好我有億萬克隆體
人類失蹤,幸好我有億萬克隆體
李青松以自己為藍本,克隆出了另一個自己。於是他發現,自己竟然可以用意識連線克隆體的大腦。 每多一個克隆體,自己便會多一具身體,多一顆大腦。自己的記憶力、學習能力、行動能力、工程能力等,都會對應提升一倍。 面對著人類文明莫名失蹤之後的浩瀚星海,李青松心中沒有任何恐懼。 “人類文明雖然只剩下了我,但‘我’,卻有無數個……”
彩虹之門
快穿惡女太魅,瘋批男主纏上癮
快穿惡女太魅,瘋批男主纏上癮
陸寧時在時空局打工。 有了編制,她就想躺平擺爛了。 然而...... 好日子沒混上,當個惡毒女配也算了,一個個突然出現的瘋批是怎麼回事? 【世界一:天才召喚師的心尖寵】 天才召喚師召喚出一個什麼都不會的廢物。 眾人極盡嘲笑。 唯一人眼神諱莫如深。 既暖了他的世界,又怎能放她離開? 【世界二:苗疆聖子的白月光】 詭譎的聖子再遇少年時的心上人? 無論她喜不喜歡,他只剩下一個念頭。 那就是,留下她。 【
千酒狸
仙人竟在我身邊
仙人竟在我身邊
泱泱五千年曆史長河裡,修仙者們留下了繁星般的傳說,而他是其中最亮的一顆。 他是王侯將相祭奠的天仙、是詩詞歌賦描繪的雲之君、是民間童謠唱誦的神靈。 如今他重入紅塵,是行走在芸芸眾生中的普通人。直到某一日,隱秘的歷史重新翻開了一角,一個個夾縫中的傳說被驗證。 人們這才意識到,仙人竟在我身邊!
江北梧桐樹