走進不科學百度網盤

第二十五章 韓·數學鬼才·立(求追讀啊啊啊啊啊啊!!!!!)

屋子裡,徐雲正在侃侃而談:

“艾薩克先生,韓立爵士計算發現,二項式定理中指數為分數時,可以用e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……來計算。”

說著徐雲拿起筆,在紙上寫下了一行字:

當n=0時,e^x>1。

“艾薩克先生,這裡是從x^0開始的,用0作為起點討論比較方便,您可以理解吧?”

小牛點了點頭,示意自己明白。

隨後徐雲繼續寫道:

假設當n=k時結論成立,即e^x>1+x/1!+x^2/2!+x^3/3!+……+x^k/k!(x>0)

則e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^k/k!]>0

那麼當n=k+1時,令函式f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)

接著徐雲在f(k+1)上畫了個圈,問道:

“艾薩克先生,您對導數有了解麼?”

小牛繼續點了點頭,言簡意賅的蹦出兩個字:

“瞭解。”

學過數學的朋友應該都知道。

導數和積分是微積分最重要的組成部分,而導數又是微分積分的基礎。

眼下已經時值1665年末,小牛對於導數的認知其實已經到了一個比較深奧的地步了。

在求導方面,小牛的介入點是瞬時速度。

速度=路程x時間,這是小學生都知道的公式,但瞬時速度怎麼辦?

比如說知道路程s=t^2,那麼t=2的時候,瞬時速度v是多少呢?

數學家的思維,就是將沒學過的問題轉化成學過的問題。

於是牛頓想了一個很聰明的辦法:

取一個”很短”的時間段△t,先算算t=2到t=2+△t這個時間段內,平均速度是多少。

v=s/t=(4△t+△t^2)/△t=4+△t。

當△t越來越小,2+△t就越來越接近2,時間段就越來越窄。

△t越來越接近0時,那麼平均速度就越來越接近瞬時速度。

如果△t小到了0,平均速度4+△t就變成了瞬時速度4。

當然了。

後來貝克萊發現了這個方法的一些邏輯問題,也就是△t到底是不是0。

如果是0,那麼計算速度的時候怎麼能用△t做分母呢?鮮為人...咳咳,小學生也知道0不能做除數。

到如果不是0,4+△t就永遠變不成4,平均速度永遠變不成瞬時速度。

按照現代微積分的觀念,貝克萊是在質疑lim△t→0是否等價於△t=0。

這個問題的本質實際上是在對初生微積分的一種拷問,用“無限細分”這種運動、模糊的詞語來定義精準的數學,真的合適嗎?

貝克萊由此引發的一系列討論,便是赫赫有名的第二次數學危機。

甚至有些悲觀黨宣稱數理大廈要坍塌了,我們的世界都是虛假的——然後這些貨真的就跳樓了,在奧地利還留有他們的遺像,也不知道是用來被人瞻仰還是鞭屍的。

這件事一直到要柯西和魏爾斯特拉斯兩人的出現,才會徹底有了解釋與定論,並且真正定義了後世很多同學掛的那棵樹。

但那是後來的事情,在小牛的這個年代,新生數學的實用性是放在首位的,因此嚴格化就相對被忽略了。

這個時代的很多人都是一邊利用數學工具做研究,一邊用得出來的結果對工具進行改良最佳化。

偶爾還會出現一些倒黴蛋算著算著,忽然發現自己這輩子的研究其實錯了的情況。

總而言之。

在如今這個時間點,小牛對於求導還是比較熟悉的,只不過還沒有歸納出系統的理論而已。

徐雲見狀又寫到:

對f(k+1)求導,可得f(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+……+x^k/k!

由假設知f(k+1)'>0

那麼當x=0時。

f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0

所以當x>0時。

因為導數大於0,所以f(x)>f(0)=0

所以當n=k+1時f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)成立!

最後徐雲寫到:

綜上所屬,對任意的n有:

e^x>1+x/1!+x^2/2!+x^3/3!+……+x^n/n!(x>0)

論述完畢,徐雲放下鋼筆,看向小牛。

只見此時此刻。

這位後世物理學的祖師爺正瞪大著那一雙牛眼,死死地盯著面前的這張草稿紙。

誠然。

以目前小牛的研究進度,還不太好理解切線與面積的真正內在含義。

但瞭解數學的人都知道,廣義二項式定理其實就是複變函式的泰勒級數的特殊情形。

這個級數與二項式定理是相容的,係數符號也是與組合符號相容的。

所以二項式定理可以由自然數冪擴充至複數冪,組合定義也可以由自然數擴充至複數。

只不過徐雲在這裡留了一手,沒有告知小牛n為負數的時候就是無窮級數這件事。

因為按照正常的歷史線,無窮小量可是出自小牛之手,推導的過程還是交給他本人就好了。

就這樣過了幾分鐘,小牛方才回過神。

只見他直接無視了身邊的徐雲,一個身位竄回座位,飛快的開始演算了起來。

看著全身心投入計算的小牛,徐雲也不生氣,畢竟這位祖師爺就是這種脾氣,可能也就在威廉·艾斯庫的面前會相對好點了。

沙沙沙——

很快。

筆尖與稿紙接觸的聲音響起,一道道公式被飛快列出。

徐雲見狀思索片刻,轉世離開了屋子。

隨意在牆角找了個位置,抬頭看起了雲捲雲舒。

就這樣,兩個小時一轉而過。

就在徐雲盤算著自己下一步該如何落子的時候,木屋門忽然被人從中推開,小牛一臉激動的從內中竄了出來。

只見他的眼中佈滿了血絲,用力的朝徐雲揮了揮手中的稿紙:

“肥魚,負數、我推出了負數!一切都搞清楚了!

二項式指數不用去管它是正數還是負數,是整數還是分數,組合數對所有條件都成立!

楊輝三角,對,下一步就是研究楊輝三角!”

也不知道是不是太過激動的緣故,小牛壓根沒注意到,自己的假髮都被震落到了地上。

看著滿臉紅光的小牛,徐雲心中也不由浮現出了一絲改變歷史的振奮感。

按照正常軌跡。

小牛要等到明年一月份收到一封約翰·提斯里波蒂的信件後,才會開竅般的攻克一系列的疑點難點。

而約翰斯里波蒂的那封信件中,提及的正是帕斯卡公開的三角圖形。

也就是說......

這個時空數學史的節點,第一次被改變了!

有了二項式開展的初步成果,小牛必然要不了多久時間,便會在楊輝三角的協助下構築出初步的流數術模型。

由此一來。

楊輝三角這個名字,也將會被鐫刻在數學王座的基底之上,那個本就該屬於它的位置!

縱使今後數百年世事變遷,滄海桑田,依舊無人能夠撼動!

華夏先賢之光,在這條時間線裡將永不蒙塵!

想到這兒,徐雲不由深吸一口氣,快步走上前:

“恭喜您了,艾薩克先生。”

看著面前東方面孔的徐雲,小牛的臉上也**了一股感慨。

那位未曾謀面的韓立爵士,僅僅是留下的幾處隨筆就能為自己撥雲見日,僅假借肥魚這個不知相隔多少代的弟子之手,便能為自己推開一扇大門。

那麼韓立爵士本人的學識又能達到什麼樣的高度呢?

能想出這種展開式的天才,稱得上一句數學鬼才絕不為過吧?

原本自己以為笛卡爾先生已經天下無敵了,沒想到居然還有人比他更為勇猛!

看來自己的數理之路,依舊任重道遠啊......

......

注:

為啥出圈指數是負的.....

人氣小說推薦More+

偉大航路但超強攻略
偉大航路但超強攻略
作為一個穿越者,你只想猥瑣發育活到大結局。 十五歲,你老哥成了准將,讓女扮男裝的你,去馬林梵多定居。 飯桌上,你忍不住蛐蛐,“只會睡覺和蹬腳踏車的雞,天天剪指甲的乾巴橘子皮精一樣的猴,凶神惡煞每天加班可能猝死的狗,反正沒一個好東西。” 下一刻,包間牆壁被岩漿融化,你見到了卡普、戰國、鶴參謀,以及神情各異的未來三大將。 你:…… 接下來數月,你慘被海軍高層們“千錘百煉”。 * 你地盤之一成了天龍人的
勇敢亂爬
殺人迷霧降臨,我能看到死者記憶
殺人迷霧降臨,我能看到死者記憶
【無限流+微驚悚+求生類+輕燒腦+無系統】 傅長欽一覺驚醒,發現自己的臥室,竟被搬到了一座詭異的別墅當中。 別墅外,是一個個被厲鬼所佔領的迷霧世界: 猶如刑場一般的情趣酒店 追求長生的祥寧小山村 一場由厲鬼組織的殺人遊戲 獻祭活人的規則怪談醫院 一場永遠完結不了的古代婚禮 屍體怎麼都拼湊不齊的連環殺人案...... 昏暗的床底, 【喂,傅長欽,你剛剛怎麼連你的隊友都殺?】 【我剛看到她,披上了人皮
搖六六六的豆豆
我靠線人系統在刑偵文裡當熱心市民
我靠線人系統在刑偵文裡當熱心市民
關夏帶著記憶胎穿,一直以為自己拿的是重活一世奮發圖強劇本 於是會說話起就根據上一世的經驗和愛好,兢兢業業學畫畫考美院,終於成為一名小有名氣的漫畫家 二十五歲就過上了夢寐以求的退休生活 就在關夏每天畫畫漫畫,旅旅遊,快樂的樂不思蜀時 某天關夏住的單元發生了命案,警察上門例行詢問,關夏的腦子裡突然跳出來一個介面,上面寫著: 線人系統繫結成功 你受到了警察的詢問,你突然想起來,4月19日下午17:53分
張小一
九等公民
九等公民
南容靠著小心謹慎(貪生怕死),在決定人類命運的日冕之戰中苟活到了最後。 再醒來時,全世界都忘記了那場戰爭,連她從軍三年的經歷,也都被抹得乾乾淨淨。 失去了珍貴的空間能力,南容表示全無遺憾:沒了是非根,是非就找不上門,她只想保住小命,當好一條稱職的鹹魚。 都說大難不死必有後福,結果她不小心混進了這個時代最有前途的基因最佳化師的行列中,還越走越遠。 但漸漸地,她開始發現事情有些不對勁兒:已經喪生於異界的
臨山海
三角翼行動
三角翼行動
作品簡介南京開泰公司專案主管徐晨旭赴澳洲後,一出機場就陷入某第三國神秘組織設下的圈套,隨即失聯。 這是一場特殊 “諜”戰,對手格摩波擁有國家背景,我方出手的是一家民營公司,同時也得到了國內相關部門的依法幫助。 這場複雜國際局勢下的交鋒,高科技手段和傳統手段交替上陣;我方堅決針鋒相對,鬥智鬥勇,詮釋了中共二十屆三中全會《決定》中有關 “強化海外利益和投資保護機制,深化安全領域國際執法合作,維護我國公
霜晨柳