走進不科學是什麼意思

第二十四章 這個時空,唯一的名字!

屋子外。

看著急匆匆跑回屋內的小牛,徐雲隱約意識到了什麼,也快步跟了上去。

“嘭——”

剛一進屋,徐雲便聽到了一道重物撞擊的聲音。

他順勢看去,只見此時小牛正一臉懊惱的站在書桌邊,左手握拳,指關節重重的壓在桌上。

很明顯,剛才小牛對著這張書桌來了波蓄意轟拳。

徐雲見狀走上前,問道:

“艾薩克先生,您這是.....”

“你不懂。”

小牛有些煩躁的揮了揮手,但沒幾秒便又想到了什麼:

“肥魚,你——或者那位韓立爵士,對數學工具瞭解嗎?”

徐雲再次裝傻犯楞的看了他一眼,問道:

“數學工具?您是說尺子?還是圓規?”

聽到這番話,小牛的心立時涼了一半,但話說了半截總不能就這樣停住,便繼續道:

“不是現實的工具,而是一套能夠計算變化率的理論。

比如剛才的色散現象,那是一種瞬時的變化率,甚至還可能牽扯到某些肉眼無法見到的微粒。

而要計算這種變化率,我們就需要用到另外一種可以連續累加的工具,去計算折射角的積。

比如n個a+b相乘,就是從a+b中取一個字母a或b的積,例如(a+b)^2=a^2+2ab+b^2...算了,我估計你也聽不懂。”

徐雲似笑非笑的看了他一眼,說道:

“我聽得懂啊,楊輝三角嘛。”

“嗯,所以還是準備一下等下去威廉舅.....等等,你說什麼?”

小牛原本正順著自己的念頭在說話,聽清徐雲的話後頓時一愣,旋即猛然抬起頭,死死地盯著他:

“羊肥三攪?那是什麼?”

徐雲想了想,朝小牛伸出手:

“能把筆遞給我嗎,艾薩克先生?”

如果這是在一天前,也就是小牛剛見到徐雲那會兒,徐雲的這個請求百分百會被小牛拒絕。

甚至有可能會被再送上一句‘你也配?’。

但隨著不久前色散現象的推導,此時的小牛對於徐雲——或者說他身後的那位韓立爵士,已經隱約產生了一絲興趣與認同。

否則他剛剛也不會和徐雲多解釋那麼一番話了。

因此面對徐雲的要求,小牛罕見的遞出了筆。

徐雲接過筆,在紙上快速的寫畫了一個圖:

.............1

.......1......1

....1......2......1

1.....3.......3.........1(請忽略省略號,不加的話起點會自動縮排,暈了)

.......

徐雲一共畫了八行,每行的最外頭兩個數字都是1,組成了一個等邊三角形。

熟悉這個影象的朋友應該知道,這便是赫赫有名的楊輝三角,也叫帕斯卡三角——在國際數學界,後者的接受度要更高一些。

但實際上,楊輝發現這個三角形的年份要比帕斯卡早上四百多年:

楊輝是南宋生人,他在1261年《詳解九章演算法》中,儲存了一張寶貴圖形——“開方作法本源”圖,也是現存最古老的一張有跡可循的三角圖。

不過由於某些眾所周知的原因,帕斯卡三角的傳播度要廣很多,一些人甚至根本不認楊輝三角的這個名字。

因此縱有楊輝的原筆記錄,這個數學三角形依舊被叫做了帕斯卡三角。

但值得一提的是......

帕斯卡研究這幅三角圖的時間是1654年,正式公佈的時間是1665年11月下旬,離現在.....

還有整整一個月!

這也是徐云為什麼會從色散現象入手的原因:

色散現象是很典型的微分模型,甚至要比萬有引力還經典,無論是偏折角度還是其本身的“七合一”表象,都直接的指向了微積分工具。

1/7這個概念,更是直接與指數的分數表態掛上了鉤。

接觸到色散現象的小牛要是不想到自己正一籌莫展的‘流數術’,那他真可以洗洗睡了。

小牛見到色散現象——小牛產生好奇——小牛測算資料——小牛想到流數術——徐雲引出楊輝三角。

這是一個完美的邏輯遞進的陷阱,一個從物理到數學的局。

至於徐雲畫出這幅圖的理由很簡單:

楊輝三角,是每個數學從業者心中拔不開的一根刺!

楊輝三角本來就是咱們老祖宗先發明並且有確鑿證據的數學工具,憑啥因為近代憋屈的原因被迫掛在別人的名下?

原本的時空他管不著也沒能力去管,但在這個時間點裡,徐雲不會讓楊輝三角與帕斯卡共享其名!

有牛老爺子做擔保,楊輝三角就是楊輝三角。

一個只屬於華夏的名詞!

隨後徐雲心中撥出一口濁氣,繼續動筆在上面畫了幾條線:

“艾薩克先生,您看,這個三角的兩條斜邊都是由數字1組成的,而其餘的數都等於它肩上的兩個數相加。

從圖形上說明的任一數C(n,r),都等於它肩上的兩數C(n-1,r-1)及C(n-1,r)之和。”

說著徐雲在紙上寫下了一個公式:

C(n,r)=C(n-1,r-1)+C(n-1,r)(n=1,2,3,···n)

以及......

(a+b)^2=a^2+2ab+b^2

(a+b)^3=a^3+3a^2b+3ab^2+b^3

(a+b)^4=a^4+4a^3b+6a^2b^2+6ab^3+b^4

(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5

在徐雲寫到三次方那欄時,小牛的表情逐漸開始變得嚴肅。

而但徐雲寫到了六次方時,小牛已然坐立不住。

乾脆站起身,搶過徐雲的筆,自己寫了起來:

(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+a^6!

很明顯。

楊輝三角第n行的數字有n項,數字和為2的n-1次冪,(a+b)的n次方的展開式中的各項係數依次對應楊輝三角的第(n+1)行中的每一項!

雖然這個展開式對於小牛來說毫無難度,甚至可以算是二項式展開的基礎操作。

但是,這還是頭一次有人如此直觀的將開方數用圖形給表達出來!

更關鍵的是,楊輝三角第n行的m個數可表示為C(n-1,m-1),即為從n-1個不同元素中取m-1個元素的組合數。

這對於小牛正在進行的二項式後續推導,無疑是個巨大的助力!

但是......

小牛的眉頭又逐漸皺了起來:

楊輝三角的出現可以說給他開啟了一個新思路,但對於他現在所卡頓的問題,也就是(P+PQ)m/n的展開卻並沒有多大幫助。

因為楊輝三角涉及到的是係數問題,而小牛頭疼的卻是指數問題。

現在的小牛就像是一位騎行的老司機。

拐過一個山道時忽然發現前方百米過後一馬平川,景色壯美,但面前十多米處卻有一個巨大的落石堆擋路。

而就在小牛糾結之時,徐雲又緩緩說了一句話:

“對了,艾薩克先生,韓立爵士對於楊輝三角也有所研究。

後來他發現二項式的指數似乎並不一定需要是整數,分數甚至負數似乎也是可行的。”

“負數的論證方法他沒有說明,但卻留下了分數的論證方法。”

“他將其稱為.....”

“韓立展開!”

.....

注:

這幾天有讀者一直問,再重申一下,這是科技文,後面有現實情節的......

一本幾百萬字的書,這才哪兒到哪兒啊,就有人說啥主角啥事沒幹....

只是我寫書的節奏歷來很慢,鋪的也會長一點,上本書一百四十萬字最強的才築基還只有一位叻.....

我開書的時候就說過了,想看那種主角開局就大殺四方一二十章身家過億的可以另尋他作,我寫不了那種書。

第一章見牛頓,第三章甩萬有引力公式,第五章回歸現實,這有意義嗎?

況且主角節奏慢歸慢,無論是我自認為還是大多數讀者的反饋都表明,迄今為止的情節是有閱讀性的,這就夠了。

起點歷來是個包容性的平臺,啥時候不寫快節奏的書就得挨噴了?

撓頭,費解。

人氣小說推薦More+

偉大航路但超強攻略
偉大航路但超強攻略
作為一個穿越者,你只想猥瑣發育活到大結局。 十五歲,你老哥成了准將,讓女扮男裝的你,去馬林梵多定居。 飯桌上,你忍不住蛐蛐,“只會睡覺和蹬腳踏車的雞,天天剪指甲的乾巴橘子皮精一樣的猴,凶神惡煞每天加班可能猝死的狗,反正沒一個好東西。” 下一刻,包間牆壁被岩漿融化,你見到了卡普、戰國、鶴參謀,以及神情各異的未來三大將。 你:…… 接下來數月,你慘被海軍高層們“千錘百煉”。 * 你地盤之一成了天龍人的
勇敢亂爬
殺人迷霧降臨,我能看到死者記憶
殺人迷霧降臨,我能看到死者記憶
【無限流+微驚悚+求生類+輕燒腦+無系統】 傅長欽一覺驚醒,發現自己的臥室,竟被搬到了一座詭異的別墅當中。 別墅外,是一個個被厲鬼所佔領的迷霧世界: 猶如刑場一般的情趣酒店 追求長生的祥寧小山村 一場由厲鬼組織的殺人遊戲 獻祭活人的規則怪談醫院 一場永遠完結不了的古代婚禮 屍體怎麼都拼湊不齊的連環殺人案...... 昏暗的床底, 【喂,傅長欽,你剛剛怎麼連你的隊友都殺?】 【我剛看到她,披上了人皮
搖六六六的豆豆
我靠線人系統在刑偵文裡當熱心市民
我靠線人系統在刑偵文裡當熱心市民
關夏帶著記憶胎穿,一直以為自己拿的是重活一世奮發圖強劇本 於是會說話起就根據上一世的經驗和愛好,兢兢業業學畫畫考美院,終於成為一名小有名氣的漫畫家 二十五歲就過上了夢寐以求的退休生活 就在關夏每天畫畫漫畫,旅旅遊,快樂的樂不思蜀時 某天關夏住的單元發生了命案,警察上門例行詢問,關夏的腦子裡突然跳出來一個介面,上面寫著: 線人系統繫結成功 你受到了警察的詢問,你突然想起來,4月19日下午17:53分
張小一
九等公民
九等公民
南容靠著小心謹慎(貪生怕死),在決定人類命運的日冕之戰中苟活到了最後。 再醒來時,全世界都忘記了那場戰爭,連她從軍三年的經歷,也都被抹得乾乾淨淨。 失去了珍貴的空間能力,南容表示全無遺憾:沒了是非根,是非就找不上門,她只想保住小命,當好一條稱職的鹹魚。 都說大難不死必有後福,結果她不小心混進了這個時代最有前途的基因最佳化師的行列中,還越走越遠。 但漸漸地,她開始發現事情有些不對勁兒:已經喪生於異界的
臨山海
三角翼行動
三角翼行動
作品簡介南京開泰公司專案主管徐晨旭赴澳洲後,一出機場就陷入某第三國神秘組織設下的圈套,隨即失聯。 這是一場特殊 “諜”戰,對手格摩波擁有國家背景,我方出手的是一家民營公司,同時也得到了國內相關部門的依法幫助。 這場複雜國際局勢下的交鋒,高科技手段和傳統手段交替上陣;我方堅決針鋒相對,鬥智鬥勇,詮釋了中共二十屆三中全會《決定》中有關 “強化海外利益和投資保護機制,深化安全領域國際執法合作,維護我國公
霜晨柳